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Executive Summary  
These documents detail the protocol for monitoring forest-nesting birds in National Park Service 
parks in the National Capital Region Network (NCRN). In the first year of sampling, counts of 
birds should be made at 384 points on the NCRN spatially randomized grid, developed to sample 
terrestrial resources. Sampling should begin on or about May 20 and continue into early July; on 
each day the sampling period begins at sunrise and ends five hours later. Each point should be 
counted twice, once in the first half of the field season and once in the second half, with visits 
made by different observers, balancing the within-season coverage of points and their spatial 
coverage by observers, and allowing observer differences to be tested. Three observers, skilled in 
identifying birds of the region by sight and sound and with previous experience in conducting 
timed counts of birds, will be needed for this effort. Observers should be randomly assigned to 
‘routes’ consisting of eight points, in close proximity and, ideally, in similar habitat, that can be 
covered in one morning.  

Counts are 10 minutes in length, subdivided into four 2.5-min intervals. Within each time 
interval, new birds (i.e., those not already detected) are recorded as within or beyond 50 m of the 
point, based on where first detected. Binomial distance methods are used to calculate annual 
estimates of density for species. The data are also amenable to estimation of abundance and 
detection probability via the removal method. Generalized linear models can be used to assess 
between-year changes in density estimates or unadjusted count data.  

This level of sampling is expected to be sufficient to detect a 50% decline in 10 years for 
approximately 50 bird species, including 14 of 19 species that are priorities for conservation 
efforts, if analyses are based on unadjusted count data, and for 30 species (6 priority species) if 
analyses are based on density estimates. The estimates of required sample sizes are based on the 
mean number of individuals detected per 10 minutes in available data from surveys in three 
NCRN parks. Once network-wide data from the first year of sampling are available, this and 
other aspects of the protocol should be re-assessed, and changes made as desired or necessary 
before the start of the second field season. Thereafter, changes should not be made to the field 
methods, and sampling should be conducted annually for at least ten years. NCRN staff should 
keep apprised of new analytical methods developed for analysis of point-count data. 
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Introduction – Protocol Overview 
Background 
A nationwide program to monitor natural resources in national parks is being developed and 
implemented as part of the Natural Resource Challenge, the National Park Service’s action plan 
for natural resource stewardship. To improve efficiency and reduce costs, the 270 park units 
deemed to have significant natural resources have been grouped into 32 networks, based on 
geography and natural resource characteristics. Each network identifies a set of physical, 
chemical, or biological elements or ecosystem processes that are of interest to the parks or 
represent their overall health or condition (i.e., vital signs), and then works with partners to 
develop plans and protocols to monitor them. Implementation of monitoring plans will occur as 
the next phase in the process. 

Eleven park units in the NPS National Capital Region (Antietam National Battlefield Park 
[ANTI], Catoctin Mountain Park [CATO], Chesapeake and Ohio Canal National Historical Park 
[CHOH], George Washington Memorial Parkway [GWMP], Harper’s Ferry National Historical 
Park [HAFE], Manassas National Battlefield Park [MANA], Monocacy National Battlefield Park 
[MONO], National Capital Parks-East [NACE], Prince William Forest Park [PRWI], Rock 
Creek Park [ROCR], and Wolf Trap National Park for the Performing Arts [WOTR]) comprise 
the National Capital Region Network (NCRN). This diverse set of parks, established to protect 
historical, cultural, or natural resources, consists of more than 250 tracts, ranging in area from < 
1 ha to > 5,000 ha (total area > 31,000 ha). The parks are scattered across four physiographic 
regions (Coastal Plain, Piedmont, Blue Ridge, and Ridge and Valley), embedded in landscapes 
that range from highly urbanized to predominantly agricultural or forested. Forest is the 
predominant natural vegetation cover within the parks.  

After a series of scoping meetings and workshops, in which vital signs were identified and 
prioritized, 21 vital signs were selected for monitoring in NCRN parks. This protocol designs a 
program to monitor populations of forest-nesting birds. We provide the rationale for monitoring 
this resource, measurable objectives, and an overview of the sampling design, with specifics 
detailed in Standard Operating Procedures and additional technical information, used to develop 
and support our recommendations, included in appendices. 

Rationale for monitoring this resource 
The NCRN parks lie within the Washington, DC, metropolitan area, where suburbanization is the 
dominant land use trend. The associated loss, fragmentation, and degradation of forests have led 
to regional or local declines in populations of some forest-nesting bird species, and the forests in 
NCRN parks are becoming increasingly important to preservation of the region’s avifauna. At 
the same time, these forests are facing several threats, including heavy browsing pressure from 
white-tailed deer (Odocoileus virginianus), tree diseases or insect pests, and invasive exotic 
plants, that affect their structure, condition, and composition, reducing their quality as habitat for 
some bird species. In addition, birds that nest in urban areas, including the NPS parks in and near 
Washington, are vulnerable to the mosquito-borne West Nile Virus (Kilpatrick et al. 2007), 
which may be impacting populations of some species. Although NPS generally does not actively 
manage park habitats for birds or other wildlife, efforts are being made to control insect pests 
(e.g., mosquitoes, gypsy moth) or invasive plants in some NCRN parks, and options currently are 
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being considered to reduce the density of deer in CATO and ROCR because of their heavy 
impacts on forest understory vegetation and tree regeneration. 

Considerable data exist on the distribution and abundance of breeding birds in the National 
Capital Region. Bird count or presence data were collected for several projects, including 
inventories and other bird surveys in NCRN parks (e.g., Brewer 2001, Dawson and Gough 2001, 
Gates and Walters 2003, Sinclair et al. 2004, Bates et al. 2005), the Prince George’s County 
(MD) Forest Bird Survey (Dawson et al. 1993), Montgomery County (MD) Bird Survey Project 
(Darr and Dawson, in prep.), Patuxent Research Refuge Breeding Bird Survey (Bystrak et al., 
unpublished), DC Birdscape (Hadidian et al. 1997) and Birdscape II (Katju and Dawson, 
unpublished), and the Northern Virginia Bird Survey (The Audubon Society of Northern 
Virginia [formerly Fairfax Audubon Society], unpublished). Field methods varied among these 
surveys, but all provide information on the spatial distribution and habitat associations of forest 
birds in the region.   

Over 90 bird species that regularly or occasionally nest in forests (Table 1) have been 
documented in NCRN parks (Brewer 2001; Dawson and Gough 2001; Gates and Walters 2003; 
Sinclair et al. 2004; Bates et al. 2005; Dawson, pers. obs.). Forests in NCRN parks also host 
many bird species during the winter months and during periods of migration. However, because 
birds are generally more mobile and not territorial during these seasons, it is difficult to design a 
meaningful long-term survey of their status and trends. 

Several of NCRN’s forest-nesting bird species have been designated as priorities for continental 
or regional conservation efforts (e.g., Rich et al. 2004), and thus should be focal species for 
monitoring efforts, to the extent possible. Wood Thrush (scientific names in Table 1), Prairie 
Warbler, Cerulean Warbler, Prothonotary Warbler, Worm-eating Warbler, and Kentucky 
Warbler have been included on the Partners in Flight Watchlist (Rich et al. 2004). Multiple 
reasons for concern exist across their ranges, and management or other on-the-ground 
conservation actions are considered necessary to reverse long-term population declines or sustain 
vulnerable populations (Rich et al. 2004).  
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Table 1. Bird species that regularly or occasionally nest in forests, and their documented or likely 
occurrence in NCRN parks.a 

pecies Scientific Name A
N

TI
 

C
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TO
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A
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A
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W

I 

R
O

C
R

 

W
O

TR
 

Great Blue Heron Ardea herodias Pob — Po Po Po Po Po Po Po — — 

Green Heron Butorides virescens Po — Po Po Po Prc Po Pr Po Po Po 

Black Vulture Coragyps atratus — — Po Po Po Po Po Po — Po — 

Turkey Vulture Cathartes aura Po Po Pr Po Po Po Po Po Po Po — 

Wood Duck Aix sponsa Pr  Pr Pr Cod Co Pr Pr Po Po Co 

Bald Eagle Haliaeetus 
leucocephalus 

— — Co Po Po Po — Co — — — 

Cooper's Hawk Accipiter cooperii Po Po Po Po Po Po Po Po Po Po Po 

Red-shouldered Hawke Buteo lineatus Po Po Pr Po Po Pr Po Pr Po Po Pr 

Broad-winged Hawk Buteo platypterus — Co Po Po Po — — Po Po Po  

Red-tailed Hawk Buteo jamaicensis Co Pr Pr Po Po Pr Po Pr Po Po Po 

Ruffed Grouse Bonasa umbellus — Po Po — — — — — — — — 

Wild Turkey Meleagris gallopavo Pr Pr Po Po — Co Po Co Po — — 

American Woodcock Scolopax minor Po — Po Po Po Po Po Po Po — — 

Mourning Dove Zenaida macroura Co Co Pr Pr Po Co Pr Pr Po Pr Pr 

Black-billed Cuckoo Coccyzus 
erythropthalmus 

— — Po — — — — — — — — 

Yellow-billed Cuckoo Coccyzus americanus Pr Co Pr Po Po Pr Po Pr Po Po Po 

Eastern Screech-Owl Otus asio Pr Co Pr Po Po Po Po Pr Po Pr Po 

Great Horned Owl Bubo virginianus Co Po Pr Po  Co Po Co Po Po Po 

Barred Owl Strix varia Pr Pr Pr Po  Po Po Pr Po Po Po 

Whip-poor-will Caprimulgus vociferus  Po Po Po Po Po — Po Po — — 

Ruby-throated 
Hummingbird 

Archilochus colubris Po Pr Pr Pr Po Po Po Po Po Pr Po 

Red-headed Woodpecker Melanerpes 
erythrocephalus 

Co — Po — — Po Po — — — — 

Red-bellied Woodpeckere Melanerpes carolinus Co Co Pr Pr Co Co Pr Co Co Pr Pr 

Downy Woodpecker Picoides pubescens Co Co Pr Pr Pr Co Pr Pr Co Pr Pr 

Hairy Woodpecker Picoides villosus Pr Co Pr Pr Po Co Pr Pr Po Pr Po 

Northern Flicker Colaptes auratus Co Co Pr Pr Po Co Pr Pr Po Pr Pr 

Pileated Woodpecker Dryocopus pileatus Co Co Pr Pr Po Pr Pr Pr Po Po Co 

Eastern Wood-Pewee Contopus virens Pr Co Pr Pr Co Pr Pr Co Pr Pr Pr 

Acadian Flycatchere Empidonax virescens Pr Co Pr Pr Po Co Pr Co Po Pr Pr 

Least Flycatcher Empidonax minimus — — Po — — — — — — — — 

Eastern Phoebe Sayornis phoebe Pr Co Pr Pr Po Co Pr Co Co Pr Co 

Great Crested Flycatcher Myiarchus crinitus Pr Co Pr Pr Pr Co Pr Co Po Pr Po 

Eastern Kingbird Tyrannus tyrannus Co — Pr Pr Po Co Pr Co Po Pr Po 

White-eyed Vireoe Vireo griseus Co — Pr Co Po Pr Pr Pr Po Po Po 

Yellow-throated Vireoe Vireo flavifrons — Co Pr Po Po Pr Pr Po Po Po — 

Warbling Vireo Vireo gilvus Pr — Pr Pr Pr — Pr Pr — — — 

Red-eyed Vireo Vireo olivaceus Pr Co Pr Pr Pr Co Pr Pr Pr Pr Po 
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Table 2 (continued). Bird species that regularly or occasionally nest in forests, and their documented 
or likely occurrence in NCRN parks.a 

pecies Scientific Name A
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Blue Jay Cyanocitta cristata Pr Co Pr Pr Po Co Pr Pr Po Pr Co 

American Crow Corvus brachyrhynchos Co Co Pr Pr Po Co Pr Pr Po Pr Po 

Fish Crow Corvus ossifragus Po — Pr Pr Po Po Po Co Po Po Po 

Common Raven Corvus corvax — Po Po — Po — — — — — — 

Tree Swallow Tachycineta bicolor Co — Pr Po Po Po Po Co Po — — 

Carolina Chickadee Poecile carolinensis Co Co Pr Pr Pr Co Pr Co Po Pr Pr 

Black-capped Chickadee Poecile atricapillus — Po Pr — — — — — — — — 

Tufted Titmouse Baeolophus bicolor Co Co Pr Pr Pr Co Pr Co Co Pr Co 

White-breasted Nuthatch Sitta carolinensis Pr Co Pr Pr Po Co Pr Pr Pr Pr Co 

Brown Creeper Certhia americana — Po Po — — — — — — — — 

Carolina Wrene Thryothorus ludovicianus Co Co Pr Pr Pr Co Pr Co Po Pr Co 

House Wren Troglodytes aedon Co Pr Pr Pr Po Pr Pr Pr Po Pr Pr 

Blue-gray Gnatcatcher Polioptila caerulea Co Co Pr Pr Po Co Pr Co Pr Pr Po 

Eastern Bluebird Sialia sialis Co Co Pr Pr Pr Co Pr Co Po Po Co 

Veery Catharus fuscescens — Co Po Po Po — — — — Po — 

Wood Thrushf Hylocichla mustelina Co Co Pr Pr Co Pr Pr Co Pr Pr Co 

American Robin Turdus migratorius Co Co Pr Pr Po Co Pr Co Pr Pr Co 

Gray Catbird Dumetella carolinensis Co Pr Pr Pr Po Co Pr Pr Po Pr Po 

Northern Mockingbird Mimus polyglottos Co Po Pr Pr Po Co Pr Pr Po Pr Po 

Brown Thrashere Toxostoma rufum Co Pr Po Po Pr Co Pr Pr Po Po Po 

European Starling Sturnus vulgaris Co Pr Pr Pr Po Co Pr Pr Po Pr Po 

Cedar Waxwing Bombycilla cedrorum Pr Po Pr Po Po Po Pr Po Po Po Po 

Blue-winged Warbler Vermivora pinus — — Po — — — — — — — — 

Northern Parula Parula americana — Pr Pr Pr Po Co Pr Pr Po Pr Po 

Yellow Warbler Dendroica petechia — — Po Po Po Po Po Pr — — — 

Chestnut-sided Warbler Dendroica pensylvanica — Pr Po — — — — — — — — 

Yellow-throated Warblere Dendroica dominica — — Pr Po Po — — Po — — — 

Pine Warblere Dendroica pinus Pr — Po Po — Co — Pr Pr Po Po 

Prairie Warblerf Dendroica discolor Pr — Po Po Po Co Po Po Po — — 

Cerulean Warblerf Dendroica cerulea — Co Pr Po — — — — — — — 

Black-and-white Warbler Mniotilta varia — Co Po Po — Po Po Po Po Po  

American Redstart Setophaga ruticilla — Co Pr — Po Po Po Co — — — 

Prothonotary Warblerb Protonotaria citrea — — Pr Po — — — Co — — — 

Worm-eating Warblerf Helmitheros vermivorus — Co Pr Po Pr Po Pr Co Po — — 

Ovenbird Seiurus aurocapillus — Co Pr Pr Po Co Po Co Pr Pr Pr 

Louisiana Waterthrushe Seiurus motacilla Pr Co Pr Pr Pr Co Pr Co Pr Pr Po 

Kentucky Warblerf Oporornis formosus — Co Pr Pr — Pr Pr Co Po Po — 

Common Yellowthroat Geothylpis trichas Pr  Pr Pr — Co Pr Co Pr Pr Po 



 

5 
 

Table 2 (continued). Bird species that regularly or occasionally nest in forests, and their documented 
or likely occurrence in NCRN parks.a 

pecies Scientific Name A
N

TI
 

C
A

TO
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W
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Hooded Warblere Wilsonia citrina — Co Po Po — — — Co Pr Po — 

Yellow-breasted Chat Icteria virens Co — Po Po — Pr Po Pr Po Po Po 

Summer Tanager Piranga rubra — — — — — — — Po Po — — 

Scarlet Tanager Piranga olivacea Pr Co Pr Pr Pr Co Pr Pr Co Pr Po 

Eastern Towheee Pipilo erythrophthalmus Co Co Pr Pr Po Co Pr Co Pr Pr Pr 

Chipping Sparrow Spizella passerina Co Co Pr Pr Po Co Pr Pr Po Po Co 

Song Sparrow Melospiza melodia Co — Pr Pr Pr Co Pr Pr Po Pr Po 

Northern Cardinal Cardinalis cardinalis Co Co Pr Pr Pr Co Pr Co Pr Pr Pr 

Rose-breasted Grosbeak Pheuticus ludovicianus — — Po — — — — — — — — 

Blue Grosbeak Guiraca caerulea Co — Po Po — Co Pr Co Po — Po 

Indigo Buntinge Passerina cyanea Co Pr Pr Pr Co Co Pr Co Po Pr Po 

Red-winged Blackbird Agelaius phoeniceus Co — Pr Co Po Co Pr Co Po Po Po 

Common Grackle Quiscalus quiscula Co Pr Pr Pr Co Po Pr Pr Po Pr Pr 

Brown-headed Cowbird Molothrus ater Co Co Pr Pr Po Co Pr Co Po Pr Po 

Orchard Oriole Icterus spurius Co Po Pr Po Po Co Pr Co Po Po Pr 

Baltimore Oriole Icterus galbula Co Pr Pr Pr Pr Co Pr Pr Po Po Po 

American Goldfinch Carduelis tristis Co Pr Pr Pr Po Co Pr Pr Po Pr Co 

Sources: Robbins 1996; Hadidian et al. 1997; Brewer 2001; Dawson and Gough 2001; Gates and Walters 2003; Sinclair et al. 2004; Bates et al. 2005; 
Katju and Dawson unpublished data; Dawson personal observation.  

Notes: 
a. Some species associated with successional habitats are included because their habitats are generally not distinguished from forest in available land 
cover data (NLCD). 
b. Po = nesting possible. 

c. Pr = nesting probable. 

d. Co = nesting confirmed. 

e. Stewardship Species, Eastern Deciduous Forest Biome (Rich et al. 2004). 

f. Partners in Flight Watchlist Species. 

 
Thirteen other species have been designated as Stewardship Species for the Eastern Deciduous 
Forest Biome (Rich et al. 2004), because a high proportion of their global population nests 
within the biome. Of these, management action is recommended to maintain populations of 
Brown Thrasher and Eastern Towhee, both of which need or use shrub/successional habitats or 
disturbed areas within forests or along forest edges, and long-term planning is recommended for 
Red-shouldered Hawk, Red-bellied Woodpecker, Acadian Flycatcher, White-eyed Vireo, 
Yellow-throated Vireo, Carolina Wren, Yellow-throated Warbler, Pine Warbler, Louisiana 
Waterthrush, Hooded Warbler, and Indigo Bunting.  

Some of the priority species are relatively common at present, and distributed throughout the 
NCRN parks (e.g., Wood Thrush, Red-bellied Woodpecker, Acadian Flycatcher, Carolina Wren; 
Table 1). Others are sparsely or patchily distributed, in part because they have more specific 
habitat requirements. Prothonotary Warblers, for example, are associated with swamps or river 
margins, and occur only in the parks bordering the Potomac or Anacostia Rivers (i.e., CHOH, 
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GWMP, NACE; Table 1). In contrast, Worm-eating Warblers associate with dry slopes, on 
ridges or in ravines. We develop a sampling design that assesses the status and trends of as many 
as possible of these species in NCRN parks, while providing information on the dozens of other 
forest-nesting bird species, some of which may need conservation or management action in the 
future. 

Measureable objectives 
1. Obtain annual estimates of density and/or indices of abundance for forest-nesting bird 

species, including those designated as priorities for conservation efforts, across parks in the 
NCRN network. 

2. Estimate long-term trends in density/abundance across parks in the NCRN network. 

Sampling Design 
 
Background 
Populations of forest-nesting birds will be sampled and monitored at points on the grid 
developed for sampling terrestrial vital signs in NCRN parks (Koenen 2005). The grid of points 
spaced at 250-m intervals was generated and clipped with park boundaries in ArcGIS 
(Environmental Systems Research Institute, Redlands, CA). A Generalized Random-Tessellation 
Stratified (GRTS) design (Stevens and Olsen 2004) was applied to all 4683 points on the grid, 
giving each an equal probability of selection and producing an ordered list of randomly selected 
points that is spatially balanced. Working within this design, once the desired sample size of 
points for a vital sign has been determined, the set of points comprising the sample starts at the 
top of the ordered list and works downward until the target number of points is reached. The 
point grid was overlaid on mapped land cover data for the region (National Land Cover Data 
1992, U.S. Geological Survey); points located in deciduous forest, evergreen forest, mixed 
forest, or woody wetlands comprise the set of forest points (n = 3495; n = 2962, when points on 
easement or other non-federal lands within park boundaries [e.g., CHOH and Piscataway 
Park/NACE] are excluded). 

The sampling design for forest-nesting birds is constrained not only by the GRTS design, but by 
the desire to obtain network-wide measures of abundance or density for a wide variety of bird 
species, some of which are sparsely or patchily distributed. Because of the inherent heterogeneity 
of the NCRN parks, we believe that sampling at a large number of points from the GRTS frame 
is necessary to provide adequate coverage of particular habitats used by priority species. More 
intensive sampling at a smaller number of points risks missing some species altogether. 
Efficiently accomplishing this necessitates adopting a count-based sampling method, rather than 
using territory mapping or a capture-mark-recapture approach (e.g., Efford 2004, Efford et al. 
2004) to estimate species’ densities.  

Counting Method 
In recent years, considerable discussion and research has focused on improving methods to 
assess bird abundance from count data. Traditional methods that use raw counts of birds heard or 
seen to index abundance are now often viewed as inadequate for drawing inferences about 
changes in abundance or density over time or space, because the probability of detecting birds 
can vary with observer, time of day or season, weather conditions, habitat, or other factors. 
Incomplete detection of birds creates a potential for artifactual variation due to variation in the 
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detection probability rather than in population size or density. Consequently, field methods that 
allow for estimation of detection probabilities are strongly recommended (e.g., Fancy and Sauer 
2000, Lancia et al. 2005) so that counts can be adjusted to obtain ‘absolute’ estimates of bird 
density or abundance; these include distance sampling (Buckland et al. 2001), double-observer 
counts (Nichols et al. 2000), and removal or time of detection sampling (Farnsworth et al. 2002, 
Alldredge et al. 2007). However, these methods each have a set of assumptions that can be 
difficult to meet, and require more complex data collection procedures, putting additional 
burdens upon (and requiring additional skills of) observers. We reviewed (see appendix 1) the 
‘absolute’ counting methods that currently are available, considering their suitability and 
feasibility for monitoring forest birds in NCRN parks, based in part on personal experience in 
using these methods in field surveys of forest-nesting birds. 

The goal for forest bird monitoring in NCRN is to obtain a precise annual measure of species-
specific population density that can be used to track changes in density over time. This goal does 
not in itself require an estimate of absolute density (only a relative measure is needed), although 
absolute estimates have some desirable properties, particularly robustness to systematic variation 
in detection probability caused by changing observers and counting conditions. However, density 
estimation causes a loss of precision compared to analysis of raw counts (e.g., Skalski and 
Robson 1992, and see below). It is unclear yet whether the greater robustness of density 
estimates to extraneous variation in detectability justifies the cost in precision. 

Recommended Method 
We propose a hybrid monitoring design for NCRN forest birds. We recommend that point-count 
data be recorded in two distance classes (‘near’ and ‘far’) to allow density estimation using the 
half-normal binomial distance model (Buckland et al. 2001). This approach greatly simplifies the 
task of measuring distances: it is necessary only to determine if detected birds are within or 
beyond a specified distance. It yields a measure of detectability, expressed either as the distance 
at which the probability of detection is 0.5, or the effective radius of detection (Buckland et al. 
2001), allowing observer- or habitat-specific calculations of area sampled. There is a slight loss 
of efficiency relative to the half-normal model applied to ungrouped detection distances, and it is 
not possible to test the goodness of fit, but the binomial model is considered to effectively 
estimate relative density, although estimates of absolute density may be biased (Buckland et al. 
2001). Possibly, a weak estimate of absolute density may serve as a better index (measure) than a 
count with no adjustment for varying detection probability. This view is expressed by Buckland 
(1987) in relation to binomial counts, and is implicit in the various other attempts to refine point 
counts (e.g., Nichols et al. 2000, Farnsworth et al. 2002). We therefore also advocate adopting a 
sampling design that reduces variation in detectability to the extent possible so that the resulting 
count data also can be analysed by Poisson regression using generalized linear models 
(McCullagh and Nelder 1989) or Hierarchical Bayes methods (e.g., Link and Sauer 2002, Royle 
and Dorazio 2006). 

Additionally, we recommend that each count be 10 minutes in length, subdivided into four 2.5-
min time intervals, with birds recorded in both the distance and time interval where first 
detected. Although this count duration is considerably longer than recommended for distance 
sampling (Buckland et al. 2001, appendix 1), it offers some advantages. First, it will likely 
increase the number of detections of “rare” species (see Dawson et al. 1995), which may sing 
less frequently than birds with near neighbours, while expending relatively little extra effort (i.e., 
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time). For more common species, where increased count length increases the probability of birds 
moving, resulting in double-counting, the count data easily can be subset for distance analysis to 
include only detections from the first one or two time intervals (i.e., 2.5 min or 5 min). Second, it 
also allows for estimation of detection probability and abundance/density using the removal 
method outlined in Farnsworth et al. (2002) or by distance-removal methods (Burnham et al. 
2004), when they are more fully developed. Because the robustness of the combined method to 
pooling across observers and habitats is still in doubt (Efford and Dawson 2009.), we use 
binomial distance estimates and unadjusted counts in the power analyses presented below. 

Power Analysis 
Background 
The intensity of monitoring must be sufficient to deliver adequate precision. Precision is 
adequate when a statistical test has a high probability of detecting significant change in 
population density, given that change has occurred. This is expressed as the ‘power’ of the 
comparison, denoted 1–β. Power depends on the magnitude of the actual change (‘effect size’) 
and also on the value of α, the chosen probability of rejecting the null hypothesis by chance. We 
conducted simulation analyses to assess power for forest bird monitoring in NCRN, nominating 
an effect size of 50% population decrease in 10 years. One-sided tests are more powerful than 
two-sided tests if only one direction of change is of interest, but we focus on two-sided tests 
because both increases and declines likely are of interest. Conventional targets for power are 
80% and 90%. In monitoring analyses, the conventional α level of 0.05 is sometimes increased to 
0.1 (e.g., Purcell et al. 2005) or 0.2 (Gibbs et al. 1998) to increase power at the expense of more 
frequent ‘false alarms’. In our analyses, designs that yielded 80% power for α = 0.05 yielded 
90% power for α = 0.1. 

Annual Population Variation 
Population variation about the trend line (temporal ‘process variance’) is an important 
determinant of power (e.g., Hatch 2003, Thomas et al. 2004a). We obtained indicative estimates 
of population variation for 46 of the bird species that nest in forests in NCRN parks by analyzing 
annual indices of abundance derived from data collected along Breeding Bird Survey routes 
surveyed in Maryland during 1966–2004 (Sauer et al. 2005, appendix 2). The measure we use is 
the standard deviation of the residuals of logged index values from the loglinear regression line

)(ˆ iyσ . We assume that process variance dominates sampling error in the larger survey. Species 
other than Carolina Wren ( )(ˆ iyσ = 0.38) and Yellow-billed Cuckoo ( )(ˆ iyσ = 0.28) fall close to 
the median )(ˆ iyσ = 0.10 (appendix 2), which we used for the power simulations reported here. 

Precision of Annual Estimate 
Within-year precision is a further determinant of power to detect a temporal trend, and one that 
relates directly to sampling effort. The coefficient of variation )ˆ(CV D of each annual index or 
estimate is a convenient measure of within-year precision. (We use D̂  here for both density 
estimates and unadjusted counts). We approach the power analysis for binomial distance in two 
stages: determine the within-year CV required to detect trend, and then determine how to achieve 
that CV by distance sampling.  
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To achieve our target (detection of 50% population decrease in 10 years), the TRENDS software 
(Gerrodette 1987, 1991) indicates a minimum value of )ˆ(CV D = 0.17 for the first year. We set 
CV(D) ∝ 1/√D, which applies, at least approximately, to both binomial distance estimates and 
Poisson regression. Essentially identical results were obtained for α = 0.05, 1–β = 0.8 and α = 
0.10, 1–β = 0.9. Very similar results are derived by Thomas et al. (2004a, Fig. 5.6, with λ = 0.50.1 
= 0.93) for the assumption of constant CV. This criterion for precision makes no direct 
allowance for process variance. 

Power calculations for unadjusted count data are outlined in appendices 3 and 4. Trend was 
estimated by Poisson regression allowing for overdispersion (i.e., by fitting a generalized linear 
model with log link and variance proportional to the expected value, using the ‘quasipoisson’ 
family in the R programming language and statistical package, http://www.r-project.org/). The 
null hypothesis of no trend was rejected when the reduction in deviance from adding a ‘year’ 
effect to the model was significant by an F-test. Dispensing with observer effects and spatial 
structure, this analysis yields the target )ˆ(CV D shown in Table 2. In the absence of process 
variance, the values nearly match those from TRENDS. With realistic process variance, the 
target is )ˆ(CV D = 0.14. The power target is arbitrary; more subtle persistent trends may be 
detected with the same effort by monitoring for longer (Figure 1). 

Table 3. Precision of annual estimates required to detect 50% population decrease in 10 years with given 
power using Poisson Regression analysis of unadjusted count dataa. 

α 1–β 
Process 
Variance 

Required:  
Total birds 
counted in 
year 1 )D̂CV(  

 

0.05 0.8 None 35 0.17  

0.1 0.9 None 35 0.17  
0.05 0.8 σ(yi) = 0.1 49 0.14  
0.1 0.9 σ(yi) = 0.1 48 0.14  

a. All tests are two-sided. Power estimated by Monte Carlo simulation with the R function simPower (appendix 4). 

Corresponding )ˆ(CV D estimated as 1/√count. 

 

How many birds must be counted to achieve CV(D) = 0.14? 

We focus now on how to achieve )ˆ(CV D =0.14 with binomial distance sampling and analysis. 
The precision of a distance estimate based on point counts is 

22 )]0(ˆ[
))0(ˆ(ˆ)(ˆ

)ˆ(CV
h

hV
n

nVD += ,   (1) 

where n is the total number of birds counted and h(0) is the slope of the tangent to the density 
function at distance r = 0 (Buckland 1987:365). For counts alone, the expression reduces to 

2
)(ˆ

n
nV . If animals are distributed completely at random, then nnV =)(ˆ , and .1)(CV

n
n =  If birds are 

spatially ‘overdispersed’ (i.e., clumped) this underestimates the actual CV and other estimates 
are preferred (e.g., Burnham et al. 1980, Buckland 1987). 
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The second term in (1) depends on details of the distance analysis. In the case of binomial 
distance sampling, the only other parameter is the proportion p1 of detections in the ‘near’ 
distance class, which varies with the distance threshold. Precision is greatest for p1 ≈ 0.8, but 
there is remarkably little variation for p1 in the range 0.5 to 0.9 (Figure 2). 

 
Figure 1. Contours of power (1–β) to detect trends of varying slope (y-axis) in relation to the duration of 
monitoring (x-axis). Sampling effort each year was held constant at the level required to yield 80% power 
to detect a 50% decline in 10 years (Table 2). The contour for 80% power (1- β = 0.8) is emphasized 
(visible when zoomed in). Results by linear interpolation from a grid of output values, each based on 5000 
replicates in simPower (appendix 4): Poisson regression fitted by quasi-likelihood; two-sided tests with α 
= 0.05 and process variation σ(yi) = 0.1. Sustained declines of 20% per 10 years may be detected with 
80% power after 20 years. 
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Figure 2. Precision of unadjusted count (solid line) for varying total count, compared to precision of 
binomial distance estimate of density with varying proportion (p1) of birds in the ‘near’ category. Dashed 
horizontal line indicates a target CV of 0.14, sufficient to provide power of 0.8 for detecting a trend leading 
to 50% change over 10 years. Precision of unadjusted count is Poisson variance conditional on 
placement of the sampling points. Precision of binomial distance estimates used the asymptotic formula 
for a half-normal detection function (Buckland 1987). 

From Buckland et al. (2001: 245), we have the following approximate expression for the number 
of sampling points k required for 14.0)ˆ(CV =D , given a mean count per point of m: k = b / 0.142 
/ m. The constant b reflects the shape of the detection function; a value of 3.0 is suggested 
(Buckland et al. 2001). Thus, for a species counted at 1.0 per point on average, 153 points should 
be counted to provide 14.0)ˆ(CV =D . A similar estimate may be obtained from Figure 2. In 
general, about three times as many detections are required for binomial distance estimation as for 
analysis of unadjusted count data. For p1 ≥ 0.5, only marginal gains in precision are expected 
from full distance analysis, the real benefits of which lie in more accurate modelling of detection 
functions than can be done with binomial distance data (Buckland 1987 Table 1; Buckland et al. 
2001).  

Distance Threshold 
Choice of an inappropriate threshold distance to separate the ‘near’ and ‘far’ distance classes 
may cause p1 << 0.5 for many species, and this is definitely to be avoided for its effect on 
precision (Figure 2). Data from breeding bird surveys in NACE and CATO (Table 3) suggest 
that 50 m is a suitable threshold for many species. There is virtually no species for which a 50-m 
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threshold is demonstrably too large (p1 >> 90%).  Several species do show p1 < 0.5 for a 50-m 
threshold. However, we do not advise the use of a larger threshold because distances greater than 
50 m are generally difficult to estimate accurately in forest. 

 
Table 4.  Mean number of birds counted per point (Mean/Pt) 

Species 

NACE CATO CHOH 
MEAN/  
10-min Mean/pt p50 Mean/pt p25 p50 Mean/pt 

Red-eyed Vireo 1.66 0.48 2.67 0.16 0.42 0.79 1.712 

American Crow 2.51 0.13 0.58 0.00 0.04 1.42 1.660 

Northern Cardinal 1.56 0.69 0.53 0.20 0.52 1.11 1.184 

Tufted Titmouse 1.45 0.68 0.66 0.16 0.48 0.77 1.032 

Wood Thrushb 0.73 0.42 1.99 0.09 0.23 0.32 0.988 

Common Grackle 1.44 0.39 0.01 1.00 1.00 1.11 0.988 

Acadian Flycatcherb 0.87 0.60 1.04 0.11 0.35 0.65 0.897 

Carolina Wrenb 1.33 0.57 0.23 0.14 0.27 0.67 0.817 

Carolina Chickadee 1.34 0.80 0.32 0.23 0.77 0.49 0.766 

Red-bellied Woodpeckerb 0.68 0.32 0.58 0.11 0.36 0.56 0.658 

Eastern Wood-Pewee 0.35 0.49 1.02 0.09 0.33 0.45 0.625 

European Starling 1.20 0.31 0.00 0.00 0.00 0.49 0.623 

Blue-gray Gnatcatcher 0.62 0.96 0.20 0.32 0.89 0.60 0.538 

Scarlet Tanager 0.30 0.56 1.15 0.18 0.42 0.11 0.494 

American Goldfinch 0.79 0.60 0.14 0.31 0.62 0.35 0.465 

American Robin 0.54 0.61 0.24 0.22 0.48 0.38 0.426 

Indigo Buntingb 0.45 0.51 0.05 0.00 0.00 0.56 0.420 

Blue Jay 0.44 0.37 0.62 0.09 0.21 0.19 0.418 

Downy Woodpecker 0.53 0.68 0.25 0.17 0.58 0.24 0.364 

Cedar Waxwing 0.52 0.52 0.23 1.00 1.00 0.18 0.326 

Gray Catbird 0.51 0.78 0.21 0.40 0.75 0.18 0.315 

Great Crested Flycatcher 0.22 0.49 0.32 0.13 0.47 0.29 0.302 

Eastern Towheeb 0.47 0.50 0.37 0.03 0.34 0.06 0.294 

Mourning Dove 0.31 0.50 0.18 0.12 0.47 0.29 0.291 

White-breasted Nuthatch 0.24 0.81 0.34 0.22 0.78 0.16 0.255 

Brown-headed Cowbird 0.30 0.75 0.27 0.20 0.72 0.15 0.250 

Red-winged Blackbird 0.43 0.31 0.00 0.00 0.00 0.19 0.228 

Pileated Woodpecker 0.08 0.03 0.35 0.09 0.24 0.20 0.221 
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Table 5.  Mean number of birds counted per point (Mean/Pt) (continued) 

Species 

NACE CATO CHOH 
MEAN/  
10-min Mean/pt p50 Mean/pt p25 p50 Mean/pt 

Baltimore Oriole 0.13 0.51 0.01 0.00 0.00 0.36 0.209 

Northern Parula 0.26 0.53 0.03 0.00 0.33 0.22 0.195 

Northern Flicker 0.13 0.32 0.18 0.12 0.35 0.17 0.175 

Yellow-billed Cuckoo 0.13 0.54 0.09 0.13 0.38 0.23 0.174 

Song Sparrow 0.15 0.43 0.001 0.00 0.00 0.26 0.169 

House Wren 0.16 0.40 0.06 0.00 0.00 0.16 0.147 

American Redstart 0.001 0.00 0.39 0.14 0.49 0.06 0.146 

Louisiana Waterthrushb 0.04 0.40 0.16 0.07 0.33 0.16 0.133 

Hooded Warblerb 0.13 0.51 0.28 0.04 0.35 0.001 0.126 

Wood Duck 0.02 0.00 0.00 0.00 0.00 0.24 0.113 

Hairy Woodpecker 0.09 0.51 0.21 0.35 0.80 0.03 0.110 

Yellow-throated Vireob 0.01 0.25 0.22 0.19 0.38 0.07 0.104 

Fish Crow 0.18 0.30 0.00 0.00 0.00 0.08 0.098 

Common Yellowthroat 0.16 0.58 0.00 0.00 0.00 0.10 0.098 

Eastern Phoebe 0.05 0.72 0.06 0.00 0.17 0.12 0.090 

Cerulean Warblerb 0.00 0.00 0.20 0.05 0.21 0.06 0.089 

Warbling Vireo 0.04 0.31 0.00 0.00 0.00 0.16 0.087 

Kentucky Warblerb 0.14 0.43 0.11 0.20 0.50 0.001 0.081 

Pine Warblerb 0.14 0.64 0.00 0.00 0.00 0.07 0.078 

Northern Mockingbird 0.19 0.32 0.00 0.00 0.00 0.02 0.072 

Prothonotary Warblerb 0.11 0.48 0.00 0.00 0.00 0.07 0.071 

Eastern Kingbird 0.12 0.61 0.00 0.00 0.00 0.06 0.067 

Worm-eating Warblerb 0.05 0.5 0.07 0.57 0.86 0.06 0.065 

Chipping Sparrow 0.06 0.39 0.03 0.00 0.33 0.04 0.050 

N. Rough-winged Swallow 0.06 0.57 0.00 0.00 0.00 0.07 0.049 

White-eyed Vireob 0.12 0.44 0.00 0.00 0.00 0.02 0.046 

Veery 0.00 0.00 0.15 0.00 0.57 0.001 0.045 

Orchard Oriole 0.09 0.49 0.00 0.00 0.00 0.03 0.044 

Yellow Warbler 0.03 0.25 0.00 0.00 0.00 0.07 0.042 

Eastern Bluebird 0.05 0.68 0.00 0.00 0.00 0.05 0.038 

Ruby-throated Hummingbird 0.06 0.95 0.02 1.00 1.00 0.03 0.037 

Yellow-throated Warblerb 0.00 0.00 0.00 0.00 0.00 0.07 0.032 
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Table 5.  Mean number of birds counted per point (Mean/Pt) (continued) 

Species 

NACE CATO CHOH 
MEAN/  
10-min Mean/pt p50 Mean/pt p25 p50 Mean/pt 

Yellow-breasted Chat 0.06 0.41 0.00 0.00 0.00 0.02 0.029 

Black-capped Chickadee 0.00 0.00 0.001 0.00 0.00 0.06 0.028 

Red-shouldered Hawkb 0.05 0.11 0.00 0.00 0.00 0.02 0.026 

Blue Grosbeak 0.08 0.46 0.00 0.00 0.00 0.00 0.025 

Belted Kingfisher 0.001 0.00 0.01 1.00 1.00 0.05 0.025 

Tree Swallow 0.03 0.80 0.00 0.00 0.00 0.03 0.023 

Wild Turkey 0.00 0.00 0.04 0.00 0.00 0.02 0.022 

Green Heron 0.02 0.50 0.00 0.00 0.00 0.03 0.022 

Red-tailed Hawk 0.01 0.00 0.04 0.00 0.25 0.00 0.016 

Brown Thrasherb 0.04 0.56 0.00 0.00 0.00 0.003 0.016 

Turkey Vulture 0.01 0.00 0.00 0.00 0.00 0.01 0.009 

Black-and-white Warbler 0.001 0.00 0.02 0.50 0.50 0.00 0.007 

Prairie Warblerb 0.003 0.00 0.00 0.00 0.00 0.01 0.006 

Black-billed Cuckoo 0.00 0.00 0.00 0.00 0.00 0.01 0.005 

Rose-breasted Grosbeak 0.00 0.00 0.01 0.00 0.00 0.001 0.004 

Common Raven 0.00 0.00 0.001 0.00 0.00 0.01 0.003 

Summer Tanager 0.003 0.00 0.00 0.00 0.00 0.00 0.001 

Ovenbird 0.45 0.35 0.98 0.05 0.14 0.01 0.448 

Notes: 
a. NACE (10-min counts conducted in 1999, Dawson and Gough 2001), CATO (12-min counts conducted in 2002, Bates et al. 2005), and CHOH 
(5-min counts conducted in 1995, 1998, and 2001; Gates and Walters 2003). The proportion of birds detected within 50 m (p50) is shown for NACE 
and the proportion within 25 m (p25) and 50 m (p50) for CATO. Counts from CATO and CHOH were standardized to 10-min count length before overall 
mean (MEAN/10-min) was calculated.  

b. Bird species that are priorities for conservation efforts (Rich et al. 2004). 



 

 

How Many Point Counts? 
Average counts of forest-nesting bird species are available from recent surveys in NACE, 
CATO, and CHOH (table 3). These surveys differed in count duration, skill level of observers, 
and timing. We adjusted counts from CATO (12 min) and CHOH (5 min) to a standard duration 
of 10 min used in the surveys in NACE (Figure 3). 

 
Figure 3. Cumulative counts of all species in CATO survey (total n = 2500), with cubic spline 
interpolation. Predicted counts are 66.0% of 12-min total after 5 min and 90.0% after 10 min. 

The required number of 10-min counts depends on the expected mean number per count for each 
species and the target total annual number of birds counted (i.e., if you expect a mean of 1 bird 
per 10-min count, then count data are needed from 49 points for Poisson regression of unadjusted 
count data, or from 153 points for binomial distance analysis). These are combined graphically in 
Figure 4.  

It is immediately obvious that some bird species are detected too seldom to be surveyed by point 
counts, mostly because of known peculiarities of their biology. The ‘tail’ of 10 species with 
mean count per point < 0.02 would require >2000 10-min counts per year, which is almost 
certainly impractical. A further group of 17 species, including three of the priority species, with 
mean count of 0.02–0.05, would require >1,000 10-min counts per season. A cluster of eight 
priority species have mean counts in the range 0.065 (Worm-eating Warbler) to 0.133 (Louisiana 
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Waterthrush), and we propose the sampling design for NCRN be sized to monitor these. This 
leads to a requirement for approximately 49/0.065 = 754 10-min counts per year. Exclusive 
reliance on binomial distance methods reduces from 52 to 30 the number of species (and from 14 
to 6 priority species) for which this effort is predicted to meet the power target (80% power to 
detect 50% decline in 10 years). 

 
Figure 4. Distribution across species of mean number counted per 10 min, in relation to the total annual 
count required for 80% power to detect a 50% decline in 10 years. Required total annual count (scaled 
bars on right) is shown for both binomial distance analysis (‘near-far’) and a Poisson regression analysis 
of unadjusted (raw) count data (assumptions as in Table 2 and Figure2). Data from three previous studies 
(CATO, NACE, CHOH) were standardized to 10-min counts based on time-of-detection data from CATO 
(5-min count x 1.36; 12-min count x 0.90). Species of conservation priority are identified. A design with 
754 10-min point-counts each year is likely to have the required power for about 50 species (horizontal 
line), including 14 of the 19 priority species, assuming the analysis is based on unadjusted count data. 

Personnel Required and Distribution of Effort 
Three observers will be needed to conduct the required number of point-counts (754) during the 
roughly six-week period in late May through early July when nearly all forest birds in the 
National Capital Region are settled on territories and actively vocalizing. The target number of 
counts can be obtained in one of two ways: by sampling 754 points once, or by making repeat 
visits to a smaller number of points. Although the first option allows for greater sampling of the 
spatial variation in NCRN, we recommend the second, specifically sampling 377 points twice 
during each year, with each point counted once in each half of the field season. This option 
balances the within-season coverage of points to increase the number of detections for species 



 

17 
 

whose detectability dwindles or increases through the breeding season. It also allows the 
coverage to be spatially balanced among observers, and for differences among observers to be 
tested. 

The points in the GRTS sample are widely dispersed, and the limited time available for sampling 
(six weeks each year, mornings only) demands that they be sampled as efficiently as possible. 
Travel times can be greatly reduced by visiting points in close proximity in succession on one 
morning rather than in the random sequence generated by the GRTS design. We call such 
convenient groups of points ‘routes’ (cf BBS and Purcell et al. 2005, though note that, unlike in 
these surveys, points in the NCRN GRTS design are independent). If possible, routes should be 
in the same habitat, so that they can be used also as units of analysis. When points are grouped in 
this way, routes become the units for allocation of observers to visits (i.e., all points on a route 
are visited by the same observer on the same morning). It is highly desirable that all routes be 
comprised of a constant number of points. If this is not the case, then care must be taken in 
analyses to allow for the size of each route (e.g., by using ‘weights’ in Poisson regression 
models, Chambers and Hastie 1993). Therefore, we round up to 384 the recommended 
number of points to sample, grouped into 48 routes of 8 points (the expected average 
number of points that can be visited and counted in one morning), each counted twice, or 
768 10-min counts.   

To achieve balanced coverage of routes/points by observers, the two visits to routes/points 
should be made by different observers, and all observers should conduct the same number of 10-
min counts (768/3 = 256). We provide (SOP, Section ii) a scheme that randomly assigns 
observers to route-visits, and recommend that it be adhered to so that observer variation can be 
assessed. In formal statistical terms, this design does not allow an estimate of the within-observer 
variance for repeat visits to a site. However, there is evidence from the point count literature that 
such variation is Poisson or nearly so (i.e., variance/mean ratio in the range 1 to 2), and the 
benefit of direct estimation is minimal. 

All first visits to points should be completed during the first three weeks of the field season, with 
second visits made during the final three weeks. The order in which routes are surveyed should 
be spatially balanced to the extent possible; e.g., don’t visit and count all points in PRWI on 
consecutive days, but distribute visits to routes throughout each half of the field season. It also is 
desirable to balance the time of coverage within the morning, so that points counted in late 
morning on the first visit are counted at an earlier time on the second visit. However, we 
recognize that logistics may render impossible the balanced coverage of points with respect to 
time of day and season. 

Data Summary and Analysis 
Pilot Year 
The first year of sampling should be viewed as a pilot year. Data collected in this year should be 
analysed with respect to observer differences, species coverage, and precision (examples and R 
programming language code are provided in SOP, Section iv). The results will allow informed 
adjustments to the design for later years, but beyond this point changes should be minimized. 
Note that the term ‘pilot’ does not imply a token effort. In fact, the effort in year 1 should be 
greater than is likely to be sustainable, so as to provide the best possible basis for finalizing the 
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subsequent design. High precision in the first year’s data will also be beneficial ultimately for 
measuring long-term trend.  

The first year’s effort will provide solid data and experience to re-evaluate some aspects of the 
design that are at present slightly speculative. Specifically: 

• The proposed staffing level may not be sufficient to complete the desired number of 
counts during the time available for sampling (i.e., mornings during late May to early 
July). 

• For the priority bird species and others that are relatively uncommon, the rates of gain in 
detections with successive time intervals should be examined to assess whether they 
justify a count duration of 10 minutes. 

• The actual, presently unknown, distribution of species across the NCRN will have 
consequences for the mean number of individuals counted for species. Counts may also 
be affected by the skill levels of observers. Mean counts for species from the pilot year 
should be used to review monitoring targets by updating Figure 4, and either increasing 
or decreasing the sampling effort in subsequent years, as considered appropriate.  

• Bird monitoring schemes are vulnerable to variation in skill level and performance 
among observers. The binomial distance method is intended to address this problem. Its 
performance should be evaluated by comparing observer differences in unadjusted (raw) 
counts with observer differences in density estimates: if binomial distance methods are 
effective, then the resulting observer-specific density estimates should be more similar 
than those based on unadjusted counts. 

• Measurements of between-route variance may prompt some fine tuning of the design. 
Although a random route effect was provided for in the simulation model used for power 
analysis (appendix 3), we had no field data to indicate its magnitude, and we ignored it 
when estimating power. Hierarchical Bayes methods (e.g., Link and Sauer 2002) can be 
used to fit such a random effect. Otherwise, habitat covariates may prove important. One 
possible scenario is that a habitat of importance to one or more of the priority species is 
under-sampled by the GRTS sample, with the result that monitoring has inadequate 
power for these species. This may justify redistributing part of the sampling effort to 
increase the list of species with adequate data; e.g., adding more samples in CHOH could 
increase the number of points at which Cerulean Warbler, Prothonotary Warbler, Yellow-
throated Warbler, and other species are counted. The key is congruence among several 
species, as resources are unlikely to be sufficient to support monitoring targeted at 
individual species. 

Analysis of Year-to-Year Changes and Long-term Trend 
Annual density estimates for bird species are calculated following the methods for binomial 
models described in Buckland (1987) and Buckland et al. (2001, Section 6.6.1); code in the R 
programming language (http://www.r-project.org/) is provided in Section iv of the SOP. The 
default is to use data from all sampled points to produce an annual network-wide estimate of 
density. However, for bird species that are relatively common, it may be possible to obtain 
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density estimates for the larger parks, for parks within the same landscape (i.e., urban, suburban, 
agricultural, forested), or for clusters of points or routes. Recording bird detections within time 
intervals also allows for estimation of species’ abundances and detection probabilities by the 
removal method (Farnsworth et al. 2002), using Program CAPTURE (model Mb, White et al. 
1982). In summary, NCRN staff should keep alert to new methods being developed for analysis 
of point count data (e.g., Royle and Dorazio 2006). 

For basic between-year(s) analyses, a log-linear trend should be fit to the density estimates or 
unadjusted counts using a generalized linear model with log-link and variance proportional to the 
mean, fitted by quasi-likelihood (see R code and example in Section iv of SOP). If the precision 
of the estimates varies between years, the inverse variance estimates (1/SEdensity2) should be 
used as weights (e.g., Thomas et al. 2004a: 81). In the longer term (> 10 years), it may be 
appropriate to fit nonlinear trajectories using generalized additive models (e.g., Fewster et al. 
2000). In the GRTS design, each point on the grid has an equal probability of being selected for 
sampling, so inferences about density and population change can be made to the entire network.  

Forest vegetation characteristics also will be sampled at all or most of the bird sampling points. 
When these data become available, the methods of Royle et al. (2004) can be used to identify 
vegetation covariates that significantly influence point-specific bird abundances and to adjust 
estimates of density accordingly. We do not describe other analyses of bird and vegetation data 
here. Note however that distance sampling and alternative methods for estimation of density do 
not produce point-specific estimates, but estimate density or abundance across a set of points. 
For bird species that are relatively common, density estimates from clusters of points can be 
related to forest vegetation characteristics sampled at the same set of points. Otherwise, 
vegetation characteristics can be used as explanatory variables in regression analyses, with point-
specific unadjusted counts or presence/absence as the response variable. 

Supplemental Monitoring 
Although we ruled out capture-mark-recapture as a monitoring method for NCRN, banding 
studies provide estimates of density (e.g., Efford et al. 2004) and other demographic parameters 
(e.g., annual adult survival, recruitment, productivity), which when monitored over space and 
time can provide insights to the mechanisms driving population change. As such, they provide a 
nice complement to count-based methods. Therefore, we recommend that NCRN staff provide 
encouragement and support to licensed banders who are interested in initiating studies of 
breeding birds in NCRN parks. If banders follow the protocols developed by the MAPS (Monitor 
Avian Productivity and Survival) program (DeSante et al. 2004, http://www.birdpop.org), 
administered by the Institute for Bird Populations, the data can also contribute to regional or 
national estimates of demographic parameters and population trends. However, note that the 
number and density of nets recommended in the MAPS protocol (< 10 nets per 8 ha, more only 
with sufficient personnel and few birds) is generally too small to yield sufficient data for 
station/site-specific estimates. In a mist-netting study conducted in June 2005 on a forested site 
on the Patuxent Research Refuge in nearby Laurel, MD (Dawson and Efford, unpublished data), 
bird capture rates were extremely low. We found that both captures and re-captures of birds 
could be increased considerably by increasing the number of nets without increasing the area 
sampled (i.e., by increasing the density of nets), with negligible extra effort involved in checking 
them. An alternative is to establish multiple banding sites in similar habitat or strata, and pool 

http://www.birdpop.org/
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data across sites. With this approach, we recommend that at least three sites be located in parks 
within the same landscape (i.e., urban, suburban, agricultural, forested).  

Additionally, NCRN staff should endorse and cooperate with efforts by others to survey forest 
bird populations in the National Capital Region. For example, bird populations in Washington, 
D.C., were sampled in the mid 1990s at points on the DC Birdscape grid (points spaced at 500-m 
intervals across the entire city, Hadidian et al. 1997). The grid was partially re-sampled in 2003 
for DC Birdscape II (Katju and Dawson, unpublished), and there are tentative plans to finish the 
sampling in the upcoming breeding season, and possibly in future years. This survey, along with 
the ongoing Northern Virginia Bird Survey sponsored by The Audubon Society of Northern 
Virginia, provide additional information on the spatial distribution, abundance, and population 
changes of birds in urban and suburban parks managed by NPS, giving some perspective to 
results from the NCRN GRTS sample.  
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Appendix 1: Currently Available Bird Counting Methods That 
Allow For Estimation of Detection Probabilities  
Distance Sampling  
Distance sampling has been widely advocated as a solution to the problem of incomplete 
detection (e.g., Buckland et al. 2001, Rosenstock et al. 2002, Ellingson and Lukacs 2003, Norvell 
et al. 2003, Buckland submitted). For counts made at points, the observer records the distances to 
birds seen or heard during a ‘snapshot moment’ or fixed, short time period. Either at the time of 
the count or during analysis, records beyond a fixed radius are discarded. The smoothed 
distribution of detection distances is used to estimate the number of birds present, but not 
detected, within the fixed radius (Buckland et al. 2001). 

The main assumptions of the distance method for point counts are: 

All birds directly above the point are detected. 

A ‘snapshot’ is obtained, so that all birds are detected as if stationary. 

Distance measurements are accurate, or detected birds are recorded in the correct distance 
interval. 

Meeting these assumptions is difficult at best, especially in forests, where birds can be concealed 
by vegetation and most detections are aural, not visual. ‘Mark-recapture distance-sampling’ 
methods have been suggested for situations where the detection of animals at the point cannot be 
guaranteed, using either a sample of marked animals and measuring the proportion detected or 
counts from two observers, where the observations of one (or each) observer provide a ‘marked’ 
sample for the other, to estimate absolute detection probabilities in a distance-sampling 
framework (Laake and Borchers 2004); however, these methods have yet to be widely tested and 
are mostly not applicable to point counts. Breaches of assumption 2 can be alleviated somewhat 
by setting a count duration that is short (e.g., 5 min or less) or by focusing the counting effort on 
a pre-defined subset of species of interest and ignoring others. Distance measurements can be 
improved by enlisting observers who are skilled or trained in perceiving birds and estimating 
distances, and equipped with laser or optical rangefinders (though note that rangefinders can only 
measure distances to clear targets, not those obscured by foliage, so are of limited use at many 
points in forest). However, it remains that in forest most estimates of distance are to the 
perceived, not necessarily actual, locations of birds, so of questionable accuracy. In an 
experiment involving recorded bird songs broadcast from known locations, Simons et al. (2005) 
found that observers tend to overestimate distances to ‘birds’ within 30 m and underestimate 
distances to ‘birds’ more than 30 m away, and the ability of observers to perceive and locate 
birds is greatly influenced by ambient noise, including traffic, wind, and stream noise, and even 
the number and diversity of birds vocalizing nearby. Although recording detected birds within 
intervals of distance simplifies the task of measuring distances, it still can be extremely difficult 
to accurately assign birds to the proper interval, especially those at some distance from the 
observer. 
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Double-Observer and Removal Models 
‘Double-observer’ (Nichols et al. 2000) and ‘removal’ (Farnsworth et al. 2002) methods have 
been advanced as alternatives to distance methods for bird point counts. In general, we believe 
that, unless safety or other constraints require that observers work in pairs, double-observer 
methods are an inefficient use of resources, doubling the cost of field data collection or halving 
the number of points that can be sampled. In removal sampling, the counting period is sub-
divided into time intervals, and the observer tallies birds in the interval when first detected. The 
numbers of birds first detected in successive time intervals are used to estimate population size 
and the probability of detection, as the product of the probability that a bird sings during the 
count and the probability that it is detected given that it sings.  

Removal estimates are highly sensitive to heterogeneity of detection probability due to distance 
from the observer. Farnsworth et al. (2002) attempted to allow for this by fitting simple mixture 
models, but this approach is ineffective at removing the bias. Combining distance and removal 
methods is a more promising approach as it potentially eliminates bias due to distance-related 
decline in detection. The method was mentioned by Farnsworth et al. (2002), and theory for a 
combined model was given by Burnham et al. (2004). We (unpublished) implemented the 
method for count data where distances to birds were recorded in intervals, and tested it on 
simulated data and on field data collected simultaneously in distance intervals (0-25 m, 25-50 m, 
50-75 m, 75-100 m) and time intervals (0-3 min, 3-6 min, 6-9 min, 9-12 min) in the Catoctin 
Mountains, Frederick County, Maryland (CATO and the nearby Frederick City Watershed 
Cooperative Wildlife Management Area, Bates et al. 2005). The method shows promise with 
simulated data, but some weaknesses have been uncovered. Standard methods for model 
selection (AIC: Akaike Information Criterion, Burnham and Anderson 1992) reject the distance-
removal model in favor of simpler (distance-only) models when data are sparse. When fitted to 
field data there is a consistent pattern of poor model fit in some distance-time classes that 
requires further investigation ((unpublished). We therefore believe it is premature to advocate the 
method for general use. 

Occupancy Methods 
Bird monitoring usually aims to describe changes in population size or density. An alternative is 
to describe changes in the proportion of habitat patches that are occupied (i.e., ‘occupancy’) by 
species of interest. On a single survey all species that occupy a patch may not be detected, but 
rigorous statistical methods exist to estimate overall occupancy rates for species (MacKenzie et 
al. 2002). These methods are relatively easy to apply: it is simply necessary to make a series of 
independent surveys over a short period of time, recording whether or not a species is detected. 
Measurement of occupancy rather than density therefore has some appeal, especially for species 
with sparse populations (MacKenzie et al. 2004, 2005).  

We do not advocate occupancy methods for NCRN for two reasons. First, the Network does not 
comprise a natural set of discrete habitat patches, and the park units that can be described as 
patches are extremely heterogeneous in shape and size. Second, although occupancy can be 
estimated from data on bird occurrence at points on a grid (results interpreted as ‘proportion of 
area occupied’), this does not yield a meaningful parameter for monitoring. This is because the 
probability of detecting a species at a point varies both with the scale of bird movements within a 
territory or home range, and with the distance at which birds are detected by visual or auditory 
cues. Point ‘occupancy’ therefore confounds the population parameter that we wish to monitor 
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(i.e., density) with observational and behavioral variables that depend in unknown ways on 
habitat, observer skill, population density, or other factors. No method exists to adjust point 
‘occupancy’ for these effects. 
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Appendix 2: Population Variation From Breeding Bird Survey 
Routes in Maryland 
We analysed data from Breeding Bird Survey (BBS) routes conducted in Maryland during 1966 
to 2004 to estimate the inherent population variation σ(yi) for 46 of the bird species that nest in 
forests in NCRN parks. Annual index values (residuals from route regressions using regional 
trends) were obtained from the BBS website (Sauer et al. 2005). For each species we calculated 
the standard error of the estimate for a linear trend fitted by least squares to the logged data. The 
method provides only an approximate upper bound for σ(yi), because the BBS data include 
sampling error (although probably much less than the proposed NCRN counts because of the 
large number of counts, approximately 2500 3-min counts per year, i.e., 50 routes, each with 50 
3-min stops/counts), and because of differing spatial scale (the area sampled by Maryland BBS 
routes is greater than NCRN). It is also possible that this analysis is biased by the route 
regression analysis. However, we wish to use historical patterns of variation only as a general 
indication of what may apply in the future, so greater accuracy appears unnecessary. 

The logged indices are plotted on the following pages to illustrate the range of trends found in 
different species. Each graph is scaled between 10% and 100% of the maximum index value for 
the species. Although a surprising number of species show sustained trends, these were seldom 
outside the range ±20% per 10 years (0.8<Trend10<1.2, Figure 1a). Carolina Wren ( )(ˆ iyσ = 
0.38) and Yellow-billed Cuckoo ( )(ˆ iyσ = 0.28) show exceptional variation around a log-linear 
trend. Other species are clustered around the median )(ˆ iyσ = 0.10 (Figure 1b). 
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Figure 1. Log-linear trend analysis for 46 forest-nesting bird species surveyed by BBS in Maryland, 1966 
to 2004. (a) Slope b, converted to multiplicative change per 10 years; Trend10 = exp(b*10), and can be 
interpreted as expected population after 10 years as fraction of initial population. (b) SE of estimate. 
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Appendix 3: Simulating Point Count Data 
We used simulated data to assess the power of point-count designs to detect trend, and to test 
methods of analysis. We distinguish a ‘process’ (or ‘state’) model and an ‘observation’ (or 
‘sampling’) model. This allows for inherent annual and spatial variation (both are forms of 
process variance) and for sampling variance (e.g., Hatch 2003, Purcell et al. 2005). Process 
variance and observer-related variation in detection are generated as log-normal random effects. 

The models actually fitted for analysis will typically be simpler than those used to generate the 
data, and include random effects only via an overdispersion parameter (Purcell et al. 2005). If 
desired, random effects may be fitted using Hierarchical Bayes (e.g., Link and Sauer 2002) in 
software such as WinBUGS or S+ Bayes, or with generalized linear mixed models fitted by 
penalized quasi-likelihood (e.g., glmmPQL in the MASS library of Venables and Ripley for R 
and S-Plus). 

We assume counts are made at the same fixed set of points each year. Points are grouped by 
habitat and/or proximity into ‘routes’. Each route may be visited and counted more than once. 
Repeat visits are by different observers (see below for allocation of observers to visits). The 
panel of observers may change between years. 

Population density is expected to vary among routes (driven by habitat or other spatial variation) 
and between years (including both random and systematic effects). Systematic between-year 
change is assumed to be linear on a log scale, with a slope that may vary among routes.  

The process model for density at a point on route j in year i is 

Dij
 = exp(a + dj + bj(i–1) + yi) (1) 

where  

a intercept (ln(D) in the absence of other effects) 

dj  route effect — Normal(mean=0, SD=σ(dj)) 

bj  route-specific trend — Normal(mean=0, SD=σ(bk)) 

yi  year effect — Normal(mean=0, SD=σ(yi)). 

 WARNING: year effects are assumed to be uncorrelated. 

The observation model for the number Cij counted on route j in year i is     

Cij
 = ∑

k

cijk Poisson[nβDij exp(εk)] (2) 

where 

n number of points per route 
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β proportionality constant between counts and density [E(count) = βD]. 

cijk = 1 if observer k counts route j in year i,  

cijk = 0 otherwise. 

εk observer effect — Normal(mean=0, SD=σ(εk)). 

[Note: this formulation assumes counts are aggregated across all visits to a route in a particular 
year. Full modelling of observer effects requires that visits be distinguished.] 

Combining (1) and (2): 

countij
 = ∑

k

cijk Poisson[exp(a0 + dj + bk(i–1) + yi + εk)] (3) 

where a0 is ln(count) in the absence of random effects and trend (a0 = a + ln(n) + ln(β)). 

Setting particular SD to zero collapses this model into various models considered by Purcell et 
al. (2005). Variation among counts is assumed to be Poisson, conditional on year, route and 
observer.  

Allocation of observers to routes is determined by the cij k. We can model the ci.k by allowing 
observers to ‘drop out’ with a random binomial probability Pk at the end of each year. For 
example, in a 10-year study with 20% random turnover (Pk = 0.2) in the observer panel per 
annum: 

Observer k 
Year i 

1 2 3 4 5 6 7 8 9 10  

1 1 1 1 1 1 1 1 1 1 1  

2 1 1 0 0 0 0 0 0 0 0  

3 0 0 1 0 0 0 0 0 0 0  

4 0 0 0 1 1 1 1 1 1 1  

5 1 1 1 0 0 0 0 0 0 0  

6 0 0 0 1 1 0 0 0 0 0  

7 0 0 0 0 0 1 1 1 1 1  
 

[Observer 3 replaces Observer 2 in year 3, but participates only 1 year before dropping out.] 

Appendix 4 describes the Monte Carlo simulation method for estimating power and contains R 
functions for models (1) and (3). 
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Appendix 4: Power Analysis by Simulation 
The R function simPower generates random count datasets from the model in appendix 3 and 
performs a Poisson regression analysis on each. Output is a table of estimated power (proportion 
of simulated datasets for which a trend is detected) for each combination of the levels of the 
input variables. 

simPower <- function ( 
     initialN=1, SDyear=0, SDrte=0, SDtrnd=0, SDobs=0, Pnewobs=1, trend10=0.5, 
     nyear = 10, nroute=48, nvisit=2, nobs=2,  
     nrep  = 1000, margins=NULL, ...) 
 
The first seven arguments of simPower match parameters in appendix 3 Model (3) as shown in 
the table below. The next four arguments (nyear, nroute, nvisit, nobs) define the design, where 
the total number of counts in a year is ‘nroute * nvisit’, conducted by ‘nobs’ different observers. 
‘nrep’ is the number of replicate simulations to be performed. ‘margins’ defines which of the 
first 11 arguments should appear as margins in the output table. e.g., margins=c(6,10) if initialN 
and nvisit have been specified at multiple levels. If margins=0, the output table automatically 
will include all dimensions with multiple levels. If margins=NULL, no summary table is 
produced and the results of each regression are output. ‘…’ indicates other arguments to be 
passed to simPoissonRegression: 

alpha α-level for test of slope (default = 0.05) 

one.sided true (T) if a 1-sided test is to be performed (default = F) 

HA sign of trend for alternative hypothesis in case of a 1-sided test (default = –1) 

obs.term true (T) if ‘observer’ should be included as a term in the regression model (default = F) [Note: ‘route’ is included 
whenever nroute>1] 

qusi true (T) if dispersion parameter to be estimated (i.e., use quasi-likelihood to fit Poisson regression; otherwise assume 
dispersion parameter=1) (default = T) 

agg true (T) if counts should be summed over visits for analysis (default = F) 

allow.revisit true (T) if observers may count a route on more than one visit in a particular year (otherwise each visit must 
be by a different observer) (default = F) 
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Table 6-1. Correspondence  between the parameters of Appendix 3 Model (3) and arguments of the R 
function SIMPower 

 
Example of usage 
 
simPower (initialN      = c(1, 5), 
          SDyear        = 0, 
          SDrte         = 0, 
          SDtrnd        = 0, 
          SDobs         = 0,  
          Pnewobs       = 0, 
          trend10       = c(1.0, 0.9, 0.8, 0.7, 0.6, 0.5), 
 
          nyear         = 10, 
          nroute        = 48, 
          nvisit        = 2,  
          nobs          = 3, 
 
          nrep          = 1000,  
          alpha         = 0.05,  
          qusi          = T,  
          one.sided     = F,  
          obs.term      = F, 
          agg           = F, 
          allow.revisit = F)    
 
 
Elapsed minutes  24.57  
 
        Trend10=1 Trend10=0.9 Trend10=0.8 Trend10=0.7 Trend10=0.6 Trend10=0.5 
InitN=1     0.054       0.073       0.154       0.296       0.481       0.744 
InitN=5     0.052       0.154       0.532       0.881       0.993       1.000 

 
Interpretation of example 
In the absence of trend (Trend10=1), the proportion of simulations yielding a significant result is 
close to the nominal alpha level (0.05) regardless of the expected initial count. This is what we 
would like. 

The 10-year trend for which power is 80% may be obtained by linear interpolation, given an 
initial expected count of 5 per route-visit (InitN=5): 

approx(x=c(0.532,0.881), y=c(0.8,0.7), xout=0.8)$y 

[1] 0.7232092 

Model 3 simPower Description 

log(a0) initialN Expected count per route-visit in the absence of other variation 

σ (yi) SDyear Variation in log (density) between years 

σ (dj) SDrte Variation in log (density) between routes 

σ (bk) SDtrnd Variation in log-linear trend in density between routes 

σ (εk) SDobs Variation in log count between observers 

Pk Pnewobs Annual probability of observer dropout 

E(bk) trend10 Mean trend (expected population after 10 years as fraction of initial population) 
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This represents a decline of 1–0.723 = 28% in 10 years. Power to detect a decline of 50% or less 
does not reach the 80% threshold for species with an initial count of 1.0.  

The example does not include any process variance (SDyear=0, SDrte=0, SDtrnd=0), observer 
variance (SDobs=0), or observer turnover (Pnewobs=0). In practice we therefore expect the 
actual power of the test to be less than calculated. 

R functions for power analysis of Poisson regression for point counts. 
simPower Conducts power analysis of Poisson regression test for trend, using data generated 
under appendix 3 Model (3). Arguments of simPower correspond to parameters of appendix 3 
Model (3). 

simulated.density Generates route- and year-specific population densities using 
appendix 3 Model (1)  

allocate.routes Simulates a panel of observers with random annual turnover, and 
assigns routes and visits to the observers active in each year 

simulated.count Applies the observation model appendix 3 Model (2) to generate 
random count data sets. Calls simulated.density and allocate.routes. 

simPoissonRegression  Performs Poisson regression (with optional overdispersion) 
on a randomly generated dataset from simulated.count. Called by simPower. 

Cut and paste all functions into the R command window. Tip 1: R may be downloaded 
from http://cran.r-project.org/  

Tip 2: R is case-sensitive. 

 

################################################################
############################# 

simulated.density <- function (nyear, nroute, trend10, sig.yr=0, 
sig.rte=0, sigbj=0) 

{ 

  # make data frame for each visit to each route in each year 
  output  <- expand.grid(year=1:nyear, route= 1:nroute) 
 

  # redefine rnorm function to allow for zero SD 
  rnorm0  <- function (n,sd) if (sd>0) rnorm(n,sd=sd) else 
rep(0,n)  
  

http://cran.r-project.org/
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  # random effects 
  randj   <- rnorm0(nroute, sig.rte)                        # 
route effect 
  randbj  <- log(trend10) / 10 + rnorm0(nroute, sigbj)      # 
route-specific trend 
  randi   <- rnorm0(nyear, sig.yr)                             # 
year effect 
 

  # expected density per point 
  # density(ij) ~ exp(dj + bj.(i-1) + yi) 
  output$dlambda <- exp ( 
                 randj  [output$route] +                    # 
route 
                 randbj [output$route] * (output$year-1) +  # 
route-specific trend 
                 randi  [output$year]                       # 
year (process error) 
                ) 
  list(randi=randi, randj=randj, randbj=randbj, density=output) 
} 
 

################################################################
############################# 

 

allocate.routes <- function (nroute=12, nvisit=1,  nobs=1, 
nyear=4, Pnewobs=1, allow.revisit=F) 

 
# Count each route 'nvisits' times in each year 
# Use a different observer each visit unless 'allow.revisit'=T  
# Observers are assigned to visits at random 
# Where possible each observer conducts the same number of 
counts in a year 
# Observers drop out between years with probability Pnewobs 
 
{ 
  if ((nobs < nvisit) & !allow.revisit) stop ('Not enough 
observers') 
  if (nobs==1) {obs <- array(dim=c(nroute, nvisit, nyear)); 
obs[,,] <- 1 } 
  else { 
 

  # Generate matrix of observers and the years they were present 
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  obs.mat <- matrix (nr=nyear, nc=nobs) 
  for (i in 1:nobs) obs.mat[,i] <- cumsum(c(1,runif(nyear-
1)<Pnewobs)) 
  if (nobs>1) for (i in 2:nobs) obs.mat[,i] <- obs.mat[,i] + 
obs.mat[nyear,i-1] 
 

  # Set up a data frame of observer combinations 
  alloc         <- expand.grid (lapply(rep(nobs, nvisit), seq, 
from=1)) 
  if (!allow.revisit) { 
    no.repeats  <- apply(apply(alloc, 1, duplicated),2,sum)==0 
    alloc       <- alloc[no.repeats,]    
  } 
  nperm         <- nrow(alloc)  # factorial(nobs) / factorial 
(nobs-nvisit) 
  multiples     <- nroute/nperm 
  if (multiples != round(multiples))  
  warning (paste('Unbalanced observers: nroute should be 
multiple of',nperm)) 
 
  # Randomly order observer combinations, enough for all routes 
in all years; then lookup 
  temp          <- as.vector(sapply(rep(nperm, 
multiples*nyear),sample)) 
  obs           <- array(unlist(alloc[temp,]), dim=c(nroute, 
nyear, nvisit)) 
 

  # Convert to actual observer numbers, allowing for year, and 
output 
  for (y in 1:nyear) obs[,y,] <- obs.mat[y, obs[,y,]] 
  obs[,,]       <- order(unique(as.vector(obs)))[obs] # number 
chronologically 
  obs           <- aperm(obs, c(1,3,2)) 
  } 
 

  dimnames(obs) <- list(paste('Route', 1:nroute, sep=''),  
                        paste('Visit', 1:nvisit, sep=''), 
                        paste('Year',  1:nyear,     sep='')) 
  obs   
} 
################################################################
############################# 
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simulated.count <- function (initN=1, sig.obs=0, nyear=10,   
nroute=7, nvisit=1, nobs=1,  
                  Pnewobs=1, agg=F, allow.revisit=F, trend10=1, 
sig.yr=0, sig.rte=0, sigbj=0) 
{ 
  output     <- expand.grid (year=1:nyear, route= 1:nroute, 
visit=1:nvisit) 
  density    <- simulated.density (nyear=nyear, nroute=nroute, 
trend10=trend10, sig.yr=sig.yr,  
                                  sig.rte=sig.rte, 
sigbj=sigbj)$density 
  Dij        <- merge (output, density, sort=F)$dlambda 
 
  # Observers 
  if (nobs>1) { 
    obs      <- allocate.routes (nroute, nvisit, nobs, nyear, 
Pnewobs, allow.revisit) 
    output$observer <- obs[cbind(output$route, output$visit, 
output$year)] 
  } else output$observer <- rep(1,nrow(output)) 
  rnorm0     <- function (n,sd) if (sd>0) rnorm(n,sd=sd) else 
rep(0,n)  
  rand.obs   <- rnorm0 (max(output$observer), sig.obs) 
 

  # Count per route ~ Poisson (exp(a0 + ln(Dij) + Ek)) 
  lambda     <- exp ( 
                 log(initN) +                                # 
constant  
                 log(Dij)   +                                # 
state 
                 rand.obs[output$observer]                   # 
observer 
                ) 
  output$count <- rpois(nrow(output), lambda) 
 

  if (agg) # sum over visits within a route 
  { 
    output <- aggregate (output$count,  
                         list(as.factor(output$year), 
as.factor(output$route)),  
                         sum) 
    names(output) <- c('year','route','count') 
  } 
  output 
} 
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################################################################
############################# 

 
simPoissonRegression <- function (in1 = c(0.1, 0.3, 0.0, 0.0, 
0.0, 1.0, 0.5, 10, 48, 2, 2),  
        alpha=0.05, one.sided=F, HA= -1, obs.term=F, qusi=T, 
agg=NULL, allow.revisit=NULL)  
 
# HA=-1 implies alternative hypothesis is decrease 
{ 
  dat <- simulated.count( 
    initN   = in1[1],  
    sig.yr  = in1[2],  
    sig.rte = in1[3],  
    sigbj   = in1[4],  
    sig.obs = in1[5],  
    Pnewobs = in1[6], 
    trend10 = in1[7], 
    nyear   = in1[8],  
    nroute  = in1[9],  
    nvisit  = in1[10],  
    nobs    = in1[11]  
  ) 
 

  form <- 'count ~' 
  if (obs.term & !is.null(dat$observer)) { 
    form         <- paste(form, 'observer +') 
    dat$observer <- as.factor(dat$observer)     
  } 
  if (nlevels(dat$route)>1) { 
    form         <- paste(form, 'route +') 
    dat$route    <- as.factor(dat$route)     
  } 
  form <- as.formula(paste (form, 'year')) 
 
  if (qusi) fam <- quasipoisson # overdispersed 
  else      fam <- poisson                            
  g1     <- glm   (formula=form, family=fam, data=dat)    
 
  b.hat  <- as.numeric(coef(g1)['year']) 
  p      <- anova(g1,test='F') ['year', 'Pr(>F)'] 
  if (one.sided) H0 <- (sign(b.hat) != HA) | ((p/2) > alpha) 
  else           H0 <- (p > alpha)            
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  c(b.hat=b.hat, p=p, H0=H0)    # only use H0, but useful to 
save trend and p   
} 
################################################################
##################### 

 
simPower <- function (initialN = c(0.1,1), SDyear=0, SDrte=0, 
SDtrnd=0, SDobs = 0,  
     nyear = 10, nroute=48, nvisit=2, nobs=2, Pnewobs=1, trend10 
= 0.5,  
     nrep  = 1000, margins=0, ...) 
{ 
  start <- proc.time()[3] 
  # sequence of fields in 'temp' is critical as rows are input 
to simPoissonRegression 
  temp <- expand.grid(initialN, SDyear, SDrte, SDtrnd, SDobs, 
Pnewobs, trend10, 
                      nyear, nroute, nvisit, nobs,  
                      1:nrep) 
 

  test <- apply(temp, 1, simPoissonRegression, ...) 
  cat('\n Elapsed minutes ', round((proc.time()[3]-start)/60,2), 
'\n \n ') 
 

  if (!is.null(margins)) { 
    temp <- array( 
       test['H0',], 
       dim      = c(length(initialN), length(SDyear), 
length(SDrte), length(SDtrnd),  
                    length(SDobs), length(Pnewobs), 
length(trend10), length(nyear), 
                    length(nroute), length(nvisit), 
length(nobs), nrep),  
       dimnames = list( paste('InitN=',   initialN, sep=''),  
                        paste('SDyear=',  SDyear,   sep=''), 
                        paste('SDrte=',   SDrte,    sep=''),  
                        paste('SDtrnd=',  SDtrnd,   sep=''),  
                        paste('SDobs=',   SDobs,    sep=''), 
                        paste('Pnewobs=', Pnewobs,  sep=''), 
                        paste('Trend10=', trend10,  sep=''), 
                        paste('NYears=',  nyear,    sep=''),  
                        paste('NRoute=',  nroute,   sep=''),  
                        paste('NVisit=',  nvisit,   sep=''),  
                        paste('NObserv=', nobs,     sep=''),  
                        NULL) 
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     ) 
    if (margins==0) margins <- (1:11)[dim(temp)[-12] > 1] 
    if (length(margins)==0) margins <- 1 
    1-apply(temp, margins, mean, na.rm=T)   # power 
  } 
  else test   # full results 
} 
################################################################
############################# 
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